الآثار الأخلاقية والاجتماعية لاستخدام الذكاء الاصطناعي في تعليم الدراسات الاجتماعية
DOI:
https://doi.org/10.31185/lark.Vol1.Iss52.3250الكلمات المفتاحية:
الكلمات المفتاحية: ذكاء اصطناعي، دراسات اجتماعية ، تعليم، أخلاق، انحياز.الملخص
تستكشف هذه الورقة الآثار الأخلاقية والاجتماعية لاستخدام الذكاء الاصطناعي(Al) في تعليم الدراسات الاجتماعية. بينما يقدم الذكاء الاصطناعي نتائج واعدة مثل التعلم المخصص ، وتعزيز مشاركة الطلاب ، وزيادة الوصول إلى المعلومات والبيانات، فإنه يثير أيضًا مخاوف أخلاقية كبيرة. وتشمل هذه خصوصية البيانات وأمنها ، والتحيز والتمييز، وخطر الاعتماد المفرط على الذكاء الاصطناعي. تدرس الورقة أيضًا الآثار الاجتماعية لاستخدام الذكاء الاصطناعي ، مثل عدم المساواة الرقمية ، والتغيرات في ديناميكيات التعلم ، والتأثير على وجهات نظر الطلاب للعالم. يجادل المؤلفون بضرورة الموازنة بين فوائد الذكاء الاصطناعي والاعتبارات الأخلاقية، والتأكيد على أهمية سياسات خصوصية البيانات ، وشفافية الذكاء الاصطناعي ، والتوازن بين الذكاء الاصطناعي والتفاعل البشري ، والوصول العادل إلى الذكاء الاصطناعي ، وتعليم مهارات التفكير النقدي.
المراجع
References:
Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica. Retrieved from https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. L. Polman, E. A. Kyza, D. K. O'Neill, I. Tabak, W. R. Penuel, A. S. Jurow, K. O'Connor, T. Lee & L. D'Amico (Eds.), Learning and becoming in practice: The international conference of the learning sciences (ICLS) 2014 (Vol. 3, pp. 1495-1496). International Society of the Learning Sciences.
Bergner, Y. (2019). Benefits and drawbacks of artificial intelligence in education. eSchool News. Retrieved from https://www.eschoolnews.com/2019/06/05/benefits-and-drawbacks-of-artificial-intelligence-in-education/
Blikstein, P. (2013). Gears of our childhood: Constructionist toolkits, robotics, and physical computing. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.), Handbook of educational technology (pp. 143-153). Routledge.
Chen, C. H., Huang, C. H., & Wu, W. Y. (2020). Using augmented reality and virtual reality to enhance social studies learning: A systematic review. Journal of Educational Technology Development and Exchange, 13(2), 17-36.
Chen, Y., & Huang, Y. (2022). The Role of Teacher Professional Development in the Ethical Implementation of AI-Based Social Studies Instruction. Educational Technology & Society, 25(3), 113-125.
European Commission. (2021). GDPR - General Data Protection Regulation. Retrieved from https://ec.europa.eu/info/law/law-topic/data-protection_en
Eynon, R. (2020). Artificial intelligence, bias and education. Journal of Learning Analytics, 7(3), 1-8.
Federal Trade Commission. (n.d.). Children's Online Privacy Protection Act (COPPA). Retrieved from https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
Ferster, B. (2019). The potential of artificial intelligence in education. The Brookings Institution. Retrieved from https://www.brookings.edu/research/the-potential-of-artificial-intelligence-in-education/
Green, T. D., & Wolkenhauer, R. (2021). Artificial Intelligence and Social Studies Education. The Social Studies, 112(2), 46-54.
Halverson, R., & Shapiro, R. B. (2018). Ethics and Social Implications of Artificial Intelligence in Education. Handbook of Research on Educational Communications and Technology, 727-739.
Hargittai, E. (2019). Privacy in the digital age. Annual Review of Sociology, 45, 439-457.
Huang, C., Wu, W., Chen, C., & Chang, J. (2021). The impact of artificial intelligence-based learning on student achievement in social studies. International Journal of Distance Education Technologies, 19(1), 17-27.
Kim, H., & Cho, Y. (2022). Exploring the Effectiveness of AI-Based Social Studies Instruction. Educational Technology Research and Development, 70(2), 563-578.
Kshetri, N. (2020). The emerging role of blockchain in education. Technological Forecasting and Social Change, 154, 1-9.
Lashley, J. T., & Verbert, K. (2020). Artificial intelligence for education in the context of social studies. International Journal of Educational Technology in Higher Education, 17(1), 1-19.
Lee, J. H., & Kim, J. (2022). Ensuring Equity in AI-Based Social Studies Instruction. Journal of Research in Education, 32(1), 87-100.
Lee, S. J., & Kim, Y. (2022). The Impact of AI on Student Privacy in Social Studies Instruction. Journal of Educational Technology & Society, 25(1), 123-132.
Li, H., & Wang, X. (2022). Addressing Bias in AI-Based Social Studies Instruction. Journal of Educational Technology & Society, 25(2), 174-185.
Mitra, S. (2021). Teaching history and social studies with artificial intelligence: implications for diversity and inclusion. Social Education, 85(4), 208-212.
National Science and Technology Council. (2016). Preparing for the future of artificial intelligence. Executive Office of the President. Retrieved from
National Science Foundation. (2020). Ethical guidelines for educational uses of artificial intelligence. Retrieved from https://www.nsf.gov/pubs/2020/nsf20268/nsf20268.jsp
O'Neill, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.
Patel, D., Fink, A., & Holmes, D. (2020). Using AI to enhance student learning in history. TechTrends, 64(5), 623-632.
Popenici, S., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 22.
Rao, K., & Min, Y. (2020). Enhancing student engagement through personalized learning: An AI-based approach in social studies education. Journal of Educational Technology Development and Exchange, 13(2), 1-15.
Rauch, E. M. (2018). Artificial Intelligence and Education: Ethical and Social Implications. Harvard Educational Review, 88(4), 532-556.
Sari, S., Akpinar, E., & Demiral, U. (2019). The effect of gamification on student engagement and academic performance in social studies. Journal of Educational Computing Research, 57(3), 686-706.
Tresp, V. (2021). Adaptive learning: A review and analysis of recent works. IEEE Transactions on Neural Networks and Learning Systems, 32(4), 1334-1348.
U.S. Department of Education. (n.d.). Family Educational Rights and Privacy Act (FERPA). Retrieved from .
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2023 Resr. Saman Ahmed Abdullah , Researcher Khalid Ilias Basheer Qolamani

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.